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Abstract

The metareasoning framework aims to enable autonomous
agents to factor in planning costs when making decisions. In
this work, we develop the first non-myopic metareasoning
algorithm for planning with Markov decision processes. Our
method learns the behaviour of anytime probabilistic planning
algorithms from performance data. Specifically, we propose
a novel model for metareasoning, based on contextual perfor-
mance profiles that predict the value of the planner’s current
solution given the time spent planning, the state of the plan-
ning algorithm’s internal parameters, and the difficulty of the
planning problem being solved. This model removes the need
to assume that the current solution quality is always known,
broadening the class of metareasoning problems that can be
addressed. We then employ deep reinforcement learning to
learn a policy that decides, at each timestep, whether to con-
tinue planning or start executing the current plan, and how to
set hyperparameters of the planner to enhance its performance.
We demonstrate our algorithm’s ability to perform effective
metareasoning in two domains.

Introduction
Rational agents should reason about the consequences of
their actions. However, this reasoning process itself has its
own consequences: thinking is a physical process that re-
quires time and energy. In many systems this issue can be
ignored, in particular where the costs of any computation are
negligible compared to the costs of actions. In other systems,
the real-world effects of reasoning cannot be discounted. As
an example, for mobile robots thinking and acting are often
closely coupled. An autonomous vehicle can use its finite bat-
tery capacity on its on-board computer or its motors. To what
extent is the energy saved by executing a better motion plan
offset by the energy cost of additional computation? This
scenario is illustrated in Figure 1. Of course, this assumes
that the agent is reasoning online. If it is able to pre-plan all
of its tasks offline, planning effort is negligible at runtime
and no metareasoning tradeoff exists.

Over the last 40 years, the field of rational metareason-
ing has developed bounded optimal algorithms for reasoning
about these tradeoffs (Russell and Wefald 1991; Cox and
Raja 2011; Hay et al. 2012). Recent problem settings have
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Figure 1: A deep sea treasure problem. Each policy represents
the results of planning for a longer duration, and achieves re-
ward indicated by the number of coins. πt2 would be optimal
overall if the extra reward gained by πt3 is less than the cost
(duration) of the additional planning time.

included motion planning and heuristic search (Burns, Ruml,
and Do 2013; Sung, Kaelbling, and Lozano-Pérez 2021; Bha-
tia et al. 2022). Optimal exact metareasoning is polynomially
harder than reasoning (Lin et al. 2015), so all practical al-
gorithms carry out approximate metareasoning. A common
simplification is to only consider the immediate effects of a
single reasoning step: this is known as the meta-greedy or
meta-myopic assumption (Russell and Wefald 1989, 1991).

Under the umbrella of metareasoning problems, we focus
specifically on metalevel control of anytime algorithms (Cox
and Raja 2011). In this setting, reasoning is carried out by an
object-level process, which is an anytime interruptible algo-
rithm. This class of algorithms provides its current solution
at any time during computation, but the longer the algorithm
runs the better the solution will be. The object-level process
is supervised by a meta-level process, which observes the
object-level algorithm’s state. Metalevel actions consist of
allowing object-level computation to continue, or terminating
the algorithm and acting using its current solution.

We wish to apply metareasoning to probabilistic planning
with Markov decision processes (MDPs). Recent works have
used deep reinforcement learning (RL) to learn non-myopic
metalevel policies (Sung, Kaelbling, and Lozano-Pérez 2021;
Bhatia et al. 2022). However, these works apply only to
object-level algorithms where the current solution quality
is known exactly, for example the current minimum path
length in RRT*. Relaxing the solution quality observability



assumption is one of the main contributions of this paper and
is crucial for the class of probabilistic planning algorithms
which we consider, since they often maintain only an ap-
proximation of the solution quality. We go on to develop a
novel contextual metalevel MDP formulation which enables
an RL agent to learn to infer solution quality from limited
information about the planner and problem instance.

Compared to existing MDP planning metareasoning works,
we avoid meta-greedy approximations and instead directly
learn the value function of the metalevel MDP. Our method
is agnostic to the choice of object-level algorithm, rather than
relying on properties of one specific algorithm as Lin et al.
(2015) do. Finally, we use the hyperparameter tuning method
proposed by Bhatia et al. (2022) to give the metalevel agent
more control over the object-level algorithm. This enables
switching between parameters that emphasise fast but low-
quality solutions vs slow and high-quality solutions, along-
side deciding when to execute the current solution.

Related Work
The metalevel control problem is commonly posed as a met-
alevel Markov decision process (Hay et al. 2012). Closest to
our setting, Lin et al. (2015) formulate online stochastic short-
est path (SSP) MDP planning metareasoning as a metalevel
MDP. In common with many metareasoning algorithms, they
are unable to exactly solve this model and must use a meta-
greedy approximation (Russell and Wefald 1991). This is
the simplifying assumption that the reasoning agent can only
choose between executing now, or executing after a single ad-
ditional reasoning step. The approximation ignores the value
of further computation, but can be shown to be optimal in the
case of diminishing returns and non-decreasing computation
cost (Callaway et al. 2018). However, solution quality plots
from real algorithms and problems rarely show smoothly
diminishing returns. One example from motion planning is
the sharp change caused by a change of homotopy class.

One way to achieve non-myopic metalevel behaviour is to
build a probabilistic model of the algorithm’s solution quality
evolution from a dataset, and use this performance profile to
determine the optimal execution point (Hansen and Zilber-
stein 2001). As long-horizon model-based planning is compu-
tationally expensive, the approach is limited to short horizons
to avoid excessive metareasoning overhead. Recent works
improve on this approach by learning the performance pro-
files, and metalevel control policies, from experience (Bhatia
et al. 2022; Sung, Kaelbling, and Lozano-Pérez 2021). These
works focus on deterministic search problems, and make
metalevel decisions based on a fixed utility function that
combines the object-level solution quality and computation
time. This contrasts with the setting of Lin et al. (2015),
where the effects and costs of reasoning depend on the cur-
rent object-level MDP state. By defining utility as a function
of object-level solution quality, these methods assume that
the current solution quality is always known. In this work
we relax that assumption in order to apply deep RL-based
metareasoning to probabilistic planning.

Callaway et al. (2018) present a method that estimates the
value of computation using a weighted combination of my-
opic and full-knowledge value of information (VOI) features.

These weights are learned from an object-level problem distri-
bution using Bayesian optimisation. Their algorithm outper-
forms those that depend only on myopic VOI features. How-
ever, the method assumes perfect knowledge of the metalevel
MDP dynamics, which is infeasible for a practical planning
algorithm. It also scales poorly with increasing complexity
of the object-level problem, due to the online calculations
required to compute the values of VOI features.

Indeed, Callaway et al. note that metareasoning is only
useful when object-level reasoning is significantly more ex-
pensive than metareasoning. It is counterproductive to spend
more time deciding whether to think than actually thinking.
Other work which explicitly analyses the overhead of metar-
easoning (Milli, Lieder, and Griffiths 2017) concurs with
this point. This explains the strong simplifying assumptions
commonly used in metareasoning algorithms, and justifies
using deep RL-trained policies for these problems: the cost
of querying actions from a trained policy is minimal.

A different but related problem setting is situated temporal
planning, which aims to maximise the probability of find-
ing a valid deterministic plan within a deadline (Cashmore
et al. 2018). Rather than a metalevel agent deciding when to
execute, metareasoning takes place on the level of deciding
which nodes to expand in a search tree. Some more recent
extensions also attempt to minimise the cost-to-goal of the
chosen plan (Shperberg et al. 2020). However, these methods
do not directly minimise the combination of planning cost
and execution cost as ours does.

Preliminaries
Markov Decision Processes. A stochastic shortest path
(SSP) MDP is a tupleM = ⟨S, init, A, T, C,G⟩, where S
is a finite set of states; init : S → [0, 1] is an initial state
distribution;A is a finite set of actions; T : S×A×S → [0, 1]
is a probabilistic transition function; C : S × A → R≥0 is
a cost function; and G ⊂ S is a set of absorbing, zero-cost
goal states.

When the initial state is deterministic, we will replace init
with s0 in the definition ofM. Actions are selected using
a stationary policy π : S → A. A policy is proper in state
s if the probability of reaching a goal state when starting
from s is 1. For an SSP MDP there must exist a proper policy
from the initial state. All improper policies must have infinite
expected cumulative cost from states that they are improper
in. It can be shown that there exists a minimum cost proper
policy (Mausam and Kolobov 2012). A policy is complete if it
provides an action for all states s ∈ S. Alternatively, a partial
policy π has a domain Sπ ⊂ S and is complete in Sπ. For a
proper policy π, let V πM = EM,s0∼init [

∑∞
i=0 C(si, π(si))],

where si is a random variable representing the state visited
at the i-th timestep, denote the expected cumulative cost of
executing policy π.

Problem Formulation
In this section, we pose our problem as minimising the ex-
pected cost of a metalevel SSP MDPMM that observes and
controls the behaviour of an object-level probabilistic planner.
Similarly to previous work (Milli, Lieder, and Griffiths 2017;



Sung, Kaelbling, and Lozano-Pérez 2021; Bhatia et al. 2022),
we assume that object-level problems are drawn from a distri-
bution p(M) over a set of decision problems D. Specifically,
the planner operates on an object-level SSP MDP instance
M = ⟨S, s0, A, T, C,G⟩, whereM is sampled according to
p(M). The object-level planner has a set of hyperparameters
{∆i}N∆

i=1, which alter its behaviour. Each hyperparameter has
a set of valid values ∆n = {δ1, δ2, . . . , δkn}.

The metalevel agent has no direct control over the actions
taken in the object-level MDP. At each metalevel timestep,
the metalevel agent observes the object-level planner’s con-
figuration (its internal state) χ and chooses a metalevel action.
Let πχ be the object-level planner’s current best solution, rep-
resented within its current configuration χ. Metalevel actions
are to a) continue planning for another timestep, altering
hyperparameter values if desired, or b) stop planning and
execute the current best solution πχ. Continuing planning for
one timestep runs the planner for time τ (which may corre-
spond to many object-level planning iterations), and incurs a
fixed instance-dependent planning cost λ(M).

The object-level planner’s current best policy πχ may not
be complete for all states reachable under that policy from s0.
We assume that πχ is combined with a default policy which
is complete and proper in state s0. This new complete and
proper policy, π̃χ, follows πχ when it is defined, and the
default policy when outside of πχ’s support.

We now define our metalevel reasoning model.
Definition 1 Given a stochastic shortest path object-level
MDP M = ⟨S, s0, A, T, C,G⟩, the metalevel MDP is an
SSP MDPMM = ⟨SM , sM0 , AM , TM , CM , GM ⟩, where:
• SM = X ∪ {DONE} where X is the set of all possible

configurations of the object-level planner and DONE is a
terminal state;

• sM0 = χ0 where χ0 is the initial configuration of the
object-level planner;

• AM = ({PLAN} × ∆1 × . . . ×∆N∆
) ∪ {EXEC}, i.e.

the agent may choose to let the planner run for another
metalevel timestep (τ time in planner time ) using the
specified hyperparameter values, or execute the current
best solution;

• TM : SM ×AM × SM → [0, 1] is defined as follows:

TM (χ, a, χ′) =



1 if χ ∈ X,
χ′ = DONE and
a = EXEC

p(χ′ | M, χ, a) if χ, χ′ ∈ X and
a ̸= EXEC

0 otherwise,

where p(χ′ | M, χ, a) is the probability of the object-
level planner transitioning to configuration χ′, given that
it was in configuration χ and ran on the object-level MDP
M for one metalevel timestep, using the hyperparameters
specified by a;

• CM : S ×A→ R≥0 is defined as follows:

CM (χ, a) =

{
λ(M) if a = PLAN

V
π̃χ

M if a = EXEC,

where λ(M) is the cost of planning for one metalevel
timestep in MDPM and πχ is the object-level planner’s
current policy; and

• GM = {DONE}.
A cost-minimising metalevel policy πM : SM → AM for

MM minimises the sum of expected total planning cost and
expected object-level policy execution cumulative cost. In
the definition of MM , we assume that X contains all the
internal features necessary to build Markovian internal state
dynamics. These dynamics might still be probabilistic be-
cause the object-level algorithm itself will typically have a
probabilistic nature (e.g. successor sampling in trial-based
search). Furthermore, to ensure that the metalevel cost min-
imisation objective is meaningful, we assume that the cost of
thinking λ(M) uses the same unit as the object-level MDP
cost. For example, the metalevel problem might be minimis-
ing total (planning + execution) time or energy spent.

Note that V π̃χ

M can be interpreted as the quality profile of
the anytime planner, i.e., given a planner configuration, it
provides a measure of the quality of the solution. With full
knowledge of p(χ′ | M, χ, a) and V π̃χ

M , the metalevel MDP
could be solved to find an optimal metalevel policy. However,
two key factors make this infeasible.

Firstly, for practical planners, the configuration space X
is prohibitively large, making offline solution impractical.
Online solution raises the spectre of metareasoning overhead.
Even more critically, the configuration dynamics depend on
the MDP instanceM. Evaluating the transition dynamics of
X onM is at least as hard as solvingM itself, negating the
value of performing metareasoning (Lin et al. 2015).

Secondly, although the configuration includes a represen-
tation of the current policy π̃χ, the expected cost V π̃χ

M of this
solution is not necessarily readily accessible. Many MDP
solution algorithms simultaneously carry out policy improve-
ment and policy value estimation. They will only precisely
calculate the expected cost of the optimal policy at conver-
gence. Of course, the current policy can be evaluated on the
current MDP instance, but this must be done sparingly to
avoid metareasoning overhead. Next, we propose an abstrac-
tion of the metalevel MDP which addresses these issues.

Method
Abstracting the Metalevel MDP
Inspired by Bhatia et al. (2022), we begin by abstractingX to
Ω, where ΦX : X → Ω provides a smaller representation of
algorithm features. Features ΦX(χ) are hand-designed and
algorithm specific, and aim to act as surrogates for the full
configuration χ. Examples include the total number of trials
or state expansions carried out, the depth of a Monte-Carlo
search tree, statistical properties of the lengths of sampled
trajectories, or value function estimates.

To learn a policy that is good in expectation across the
space of all MDPs in the domain D of object-level problems,
we extend the state-representation of the abstracted metalevel
MDP to include a context vector representing the object-level
instanceM being solved. By learning the correlations be-
tween context vector values and algorithm performance, we



can approximate the effects of the object-level MDP instance
on p(χ′ | M, χ, a). The information contained in the con-
text vector is based on what the system could be reasonably
expected to know about the problem it is solving, and thus
is problem-dependent. For example, in our race track do-
main experiments, the context vector contains the maximum
speed and probability of acceleration failure for the agent’s
car. We denote the context set as Ψ, and define the function
ΦD : D → Ψ which maps an MDPM to its context vector
ΦD(M). The cost of thinking λ(M) is also included in the
context vector, as it is also a constant property of the object-
level MDP instance. The context vector can be treated as a
part of the state of the abstract metalevel MDP which is set in
the initial state according to p(M), and remains fixed during
execution.

We can now define our abstract metalevel MDP:
Definition 2 The abstract metalevel MDP is defined as
M̂M = ⟨ŜM , ˆinit

M

0 , A
M , T̂M , ĈM , GM ⟩, where:

• ŜM = Ω × Ψ ∪ {DONE}, i.e., a state is either of the
form (ω, ψ) where ω is the current value of the algorithm
features and ψ is a context vector representing the object-
level MDP being considered; or is the final state DONE
which represents sending the current object-level policy
for execution;

• For s = (ω, ψ) ∈ ŜM :

ˆinit0(s) =

{∫
{M|ΦD(M)=ψ} p(M)dM if ω = ω0

0 otherwise,

where ω0 are the planner initial feature values (i.e. the
initial context vector value distribution is calculated via
marginalisation over p(M));

• As with the metalevel MDP, T̂M movesM to state DONE
with probability 1 when action EXEC is selected. For s =
(ω, ψ), s′ = (ω′, ψ) ∈ Ŝ and a ∈ AM , T̂M (s, a, s′) is
the probability of the planner moving to a configuration χ′

such that ΦX(χ′) = ω′, given that its algorithm features
were ω and it ran for one metalevel timestep, using the
hyperparameters specified by a;

• The cost function ĈM is only action-dependent and de-
fined as CM .

Note that the action space and goal state of the abstract
metalevel MDP are the same as the metalevel MDP in Def. 1.
Its behaviour is similar to the metalevel MDP, but it (i) op-
erates over a small set of algorithm features rather than its
full internal configuration, to achieve scalability; and (ii) con-
siders all possible MDPs in D using a context vector which
is fixed during execution and distributed in the initial state
according to p(M). We do not have access to a closed-form
definition of T̂M . Hence, next we propose a general deep RL
algorithm that learns the value function and optimal policy
for M̂. This approach assumes that the transition function
remains Markovian when defined over a state-space based on
abstraction ΦX . In future work, we will investigate how to
relax this assumption by allowing the agent to reason using
a history of its past actions and observations, e.g., using a
recurrent, LSTM or transformer architecture.

Algorithm 1: General deep RL on the abstract metalevel MDP
Input: Problem distribution p(M), object-level algorithm
PLANNERALG, default policy π̃, number of training episodes
Me, object-level planning time per metalevel timestep τ
Output: Trained policy πMθ .

1: Initialise πMθ randomly
2: for episode = 1, . . . ,Me do
3: SampleM from D according to p(M)
4: ψ ← calculate MDP context ΦD(M)
5: χ← initial configuration of PLANNERALG forM
6: ω ← calculate features ΦX(χ)
7: ŝ← (ω, ψ)
8: repeat {run episode}
9: â← select action using πMθ (ŝ)

10: if â = EXEC then
11: π̃χ ← best solution from current configuration

χ , completed by π̃
12: ĉ← estimate V π̃χ

M
using Monte-Carlo simulation

13: ŝ′ ← DONE
14: else {â = (PLAN, δ1, . . . , δN∆

)}
15: χ← update hyperparameters to δ1, . . . , δN∆

16: χ← run planner for time τ
17: ĉ← λ(M)
18: ω ← calculate new features ΦX(χ)
19: ŝ′ ← (ω, ψ)
20: end if
21: Store (ŝ, â, ĉ, ŝ′)
22: ŝ← ŝ′

23: until ŝ = DONE
24: Update parameters of πMθ using stored episode data
25: end for
26: return πMθ

Unlike previous metalevel MDP formulations (Sung, Kael-
bling, and Lozano-Pérez 2021; Bhatia et al. 2022), the state of
our abstract metalevel MDP does not include the performance
of the current policy. Thus, we cannot use a closed-form cost
function based on a utility function that combines the current
time and solution quality, as those methods do. Instead, we
must learn the cost function from experience, using evalua-
tions of the final policy cost at execution. This means that we
are implicitly learning contextual and feature-based perfor-
mance profiles for the planner algorithm.

Deep RL for the Abstract Metalevel MDP
An algorithm for training the RL metareasoning agent is
given in Algorithm 1. To simplify the presentation, we ab-
stract away the specifics of the exact RL algorithm used,
although the algorithm structure is based on that proposed
by Bhatia et al. (2022), which is similar to DQN (Mnih
et al. 2015). Adapting our approach to an actor-critic frame-
work is straightforward. Specifically, replacing DQN with
an algorithm that supports a hybrid action space, e.g. Hybrid
SAC (Delalleau et al. 2019), would enable continuous hyper-
parameter tuning alongside the discrete plan/act actions.

In Algorithm 1, each training episode corresponds to solv-
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Figure 2: The effect of differing heuristic weights on solution
convergence for WBRTDP, on a racetrack problem instance.

ing and then executing a policy in a single problem instance
sampled from the problem distribution p(M) (line 3). A new
object-level planner is initialised for each problem instance
(line 5). In line 7 the initial state contains the initial values of
the planner features plus the context vector ΦD(M) for the
sampled problem, which does not change during the episode.
At each timestep, the metalevel agent can choose to execute
the current best object-level policy (completed by the default
policy) π̃χ, (line 10) or to continue planning (line 14).

If the agent chooses to execute, we estimate the expected
cost of the completed policy π̃χ, by sampling N trajectories
of M under π̃χ, and taking their average cumulative cost
(line 12). With this final cost, the metalevel MDP transitions
to its final absorbing state DONE (line 13) and the episode
ends (line 23). If the agent chooses to continue planning, the
action specifies the object-level planner hyperparameters to
use for the next timestep (line 15). These are used by the
object-level planner to plan for a single metalevel timestep
(line 16) which, we recall, can correspond to many iterations
of the object-level planner. The thinking step costs λ(M)
(line 17), and causes the features ΦX(χ) to evolve (line 18).
This is reflected in the updated state (line 19).

Experienced state transitions are used to update the learned
policy (line 24), depending on the specific RL algorithm.
As the RL agent chooses when to terminate deliberation,
the metalevel episode length is not fixed. In practice, we
set a maximum number of timesteps per episode, and force
the action choice to be EXEC after that number. The policy-
dependent episode length has the advantage that the algorithm
performance data collected is only that which is relevant to
the metareasoning task. By comparison, sequence predic-
tion methods such as that proposed by Sung, Kaelbling, and
Lozano-Pérez (2021) require training on performance pro-
files that are run to full convergence. This can take a long
time due to diminishing returns as the algorithm converges.

Experiments
Object-Level Algorithm: Weighted BRTDP
Automatic hyperparameter tuning is generally useful to im-
prove algorithms’ performance (Falkner, Klein, and Hutter
2018), and one would expect a hyperparameter-tuning learn-
ing agent to learn the optimal hyperparameters to use for a
problem distribution p(M). However, we wish to demon-

strate the metareasoning-specific benefits of hyperparameter
tuning. To do so, we introduce a hyperparameterised version
of BRTDP (McMahan, Likhachev, and Gordon 2005), which
we call Weighted BRTDP (WBRTDP). By allowing the met-
alevel agent to change the weighting hyperparameter, we
can give it more control over the object-level algorithm’s be-
haviour. Specifically, we expect it to learn to use weights that
lead to fast, imperfect solutions when the cost of planning λ
is high relative to the cost of object-level policy execution.

The algorithm is inspired by variants of A* and AO*
(Hansen and Zhou 2007; Bonet and Geffner 2012) which
use inadmissible heuristics to bias the algorithms’ conver-
gence behaviour. WBRTDP allows switching between differ-
ent lower-bound heuristics during the search process, with
minimal overhead. Figure 2 shows WBRTDP running on a
single instance of the racetrack problem (described below),
using differing fixed heuristic values for each line. With the
admissible (hl = 0.0) fixed heuristic for all states, the algo-
rithm converges to the true optimal policy some time after
time t2. However, early in the search process (e.g. at t1), the
inadmissible heuristic values enable much faster convergence
to a suboptimal policy. We detail WBRTDP and the features
we used for metareasoning in the supplementary material.

Deep RL Algorithm
In our experiments we use DQN (Mnih et al. 2015), a
frequently-used model-free deep RL algorithm. The action
space for the algorithm is the EXEC action or choosing to set
the heuristic weight to a value hl ∈ {0.0, 10.0, 20.0, 30.0}.
Further details on the implementation of DQN for our method
can be found in the supplementary material.

Experiment Domains
We generate object-level MDP problems from problem distri-
butions in two domains.

The deep sea treasure (DST) domain is similar to that
in Figure 1, but larger. Object-level solution improvement in
this domain can result from the planner optimising its path to
a given treasure, or finding a better treasure. Finding a better
treasure will generally cause a larger improvement in the
solution expected cost. This makes the domain interesting for
metareasoning problems: performance profiles will typically
not show diminishing returns behaviour.

The domain was originally proposed as a deterministic
multi-objective episodic MDP by Vamplew et al. (2011). We
convert it to a probabilistic single-objective SSP. The agent
starts in the top left corner of a grid world with randomly
sampled dimensions, with actions that probabilistically ac-
celerate it in the eight cardinal directions. With probability
Pfail, the acceleration action fails. Each action (including no
acceleration) has a fixed time cost of 1. Final rewards for gath-
ering treasure are converted to costs. The cost of a treasure-
collection action is the maximum value of treasure generated
in this problem class minus the value of the treasure collected.
The default policy is to proceed directly downwards from the
current state. The shape of the sea floor, treasure locations,
treasure values and Pfail ∼ Uniform(0, 0.3) are randomly
sampled. Deeper states correlate with higher average treasure
values. Pfail, the x and y dimensions of the problem instance,



and max velocity vmax ∈ {1, 2} are provided as context to
the metalevel agent.

The race track (RT) domain is a grid world originally
described by Barto, Bradtke, and Singh (1995), and used by
McMahan, Likhachev, and Gordon (2005) to evaluate their
BRTDP algorithm. The state space (x, y, vx, vy) ∈ S is 4
dimensional and consists of 2D position and velocity. Actions
are to accelerate in any of the 8 cardinal directions, or to do
nothing. Actions fail to have any effect with probability Pfail.
Colliding with a wall sets the velocity to zero. The initial state
is a state on the start line and goal states are the racetrack
finish line. The default policy is to proceed at a constant
speed of 1 in the direction along the track.

Problem instances for this domain are randomly generated
28× 21 racetrack layouts, combined with randomly sampled
maximum velocities and action failure probabilities. The
maximum allowed velocity of the agent in each axis is vmax ∈
{3, 4} with equal probability, and Pfail ∼ Uniform(0, 0.3).
These two values are provided to the metalevel agent as
context. Challenges for metareasoning in this domain are
the relatively large 4-dimensional state space, and the object-
level planner’s uninformative heuristic function. Unlike the
DST domain, goal states are located some distance from the
agent’s start state. This can lead to planning algorithms taking
a long time to generate an initial solution.

For the experiments we define time in units of object-level
planner state visits. For WBRTDP, a state visit consists of
evaluating transition probabilities and carrying out a backup
at a state, which can be assumed to take constant time if the
number of actions and transitions available is similar across
all states. Using this instead of elapsed real time aids repeata-
bility by negating external effects, such as varying processor
task load impacting processing time. The maximum time
for a metareasoning episode is 10K state visits for the DST
domain or 100K state visits for the RT domain. This is di-
vided evenly into 20 metalevel timesteps. For each problem
instance, the thinking cost per metalevel timestep is sampled
from Uniform(0.0, 10.0). For both domains, illustrations and
additional details are given in the supplementary material.

For each method, we evaluate across 8 DQN agents trained
from differing random seeds. Agents are trained with 300K
steps (RT) or 600K steps (DST) of experience, and their best
performing checkpoint (evaluated on a non-overlapping eval-
uation set) is used in the experiments. Experiments are run
using a held-out set of 1000 problems sampled from p(M).

Results
We compare our method to two alternative ways of address-
ing the lack of solution quality knowledge. These methods
use the known-solution-quality cost function from previous
works (Sung, Kaelbling, and Lozano-Pérez 2021; Bhatia
et al. 2022), but differ in how they estimate the current so-
lution quality. The first estimation method, MidBound, uses
the midpoint of the BRTDP bounds as an estimate of the ex-
pected cost of the solution. This is readily available and cheap
to compute, but is likely inaccurate. The second method,
PolicyEval, evaluates the current object-level policy on the
object-level MDP at each metareasoning step. This gives an
accurate estimate of the current solution quality, but is ex-

pensive to compute. The additional reasoning increases the
cost of thinking incurred by the metalevel agent by a constant
factor, which we measure empirically as described in the
supplementary material.

Additionally, we compare performance with ablations of
our method that disable certain components. The NoFea-
tures ablation removes algorithm features from the RL agent
state, the NoContext ablation similarly removes the problem
context, and the NoTuning ablation disables hyperparameter
tuning so carries out only stopping time optimisation.

We do not compare with the metamyopic agent proposed
by Lin et al. (2015) as their setting is online (rather than
single-shot) metareasoning. Furthermore their method relies
on predicting BRTDP bounds behaviour from the last step’s
bounds behaviour. In almost all cases in our experiments, it
takes more than one metalevel timestep for the planner to gen-
erate an initial solution. This would result in the metamyopic
agent assuming zero possibility of solution improvement and
always executing after a single thinking step.

Figure 3 shows the combined thinking and acting cost for
each method in the DST domain. Performance is normalised
for each problem instance, where 0.0 is the expected cost of
the optimal object-level solution (equivalent to the optimal
metalevel cost assuming zero thinking cost) and 1.0 is the
expected cost of the default policy. It is not possible for the
metalevel agent to achieve a cost lower than the optimal
object-level solution, as λ ≥ 0. This is a similar concept to
the metareasoning gap presented by Lin et al. (2015).

In the DST domain, our method achieves the lowest cost
on average. The NoContext ablation performs the worst of
the ablations, as this learning agent does not know the cost of
thinking for the current problem. At best it can only optimise
its behaviour in expectation for the cost of thinking distribu-
tion in the problem distribution. All ablations show a range
of deliberation time, demonstrating that they are carrying
out metareasoning based on the problem at hand rather than
converging on a fixed metalevel episode length that suits the
problem distribution. In fact all ablations have a termination
time ranging from the earliest timestep to the latest timestep.

The two methods that estimate solution quality, MidBound
and PolicyEval, have a much narrower range of deliberation
time and incur more cost on average. For MidBound, the
agent’s estimate of the current solution quality is particularly
inaccurate at the start of the episode, where the WBRTDP
bounds are very loose. This leads to myopic behaviour and
early termination. On the other hand, PolicyEval incurs an
increase in thinking cost by having to evaluate its current pol-
icy at every metalevel decision step. For this problem setting
and object-level implementation, the increase in thinking cost
varied from around 50% to 100%. This is too high a cost to
be offset by the improved solution quality estimate. Given
the high cost of thinking, it converges to always terminating
very early in the episode.

For the RT domain (Figure 4), the NoFeatures ablation
performs almost identically in cost and metalevel episode
length to the full method, although it does have higher stan-
dard deviation in cost. This suggests that for this domain
the algorithm features are not particularly useful, and good
performance can be achieved based on other state features.
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Figure 3: Normalised total thinking and acting cost and metalevel episode length on the held-out problem set in the DST domain.
The left hand side plot shows the mean and standard deviation of the incurred cost for each method or ablation, and the right
shows the distribution over number of thinking steps before executing. Triangles show mean values, orange lines show medians.
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Figure 4: Normalised total thinking and acting cost and metalevel episode length on the held-out problem set in the RT domain.

The mean metalevel episode length for the NoTuning abla-
tion significantly differs from the median and quartiles. This
could result from a small proportion of long episodes and a
large proportion of immediate execution. This makes sense
for an ablation which can only perform the slowest, most
optimal planning, and chooses to do this only when the cost
of thinking is low. Finally, the MidBound estimation method
is more successful in this domain than in the DST domain,
but still performs poorly compared to our method.

We analyse the statistical significance of these results using
the one-sided Mann-Whitney U test. Our method is signif-
icantly better (p = 0.01) than all ablations and alternative
solution quality estimation methods in both domains, except
for the NoFeatures ablation in the RT domain.

In order to demonstrate the metareasoning behaviour of
our method, we study metalevel episode length in more detail
in the DST domain. For the held-out problem set, Figure 5
shows the relationship between the cost of thinking for an
episode λ(M) and the timestep at which the metalevel agent
chooses the EXEC action. There is a strong negative correla-
tion between the two, indicating that the agent is more likely
to terminate early when the cost of thinking is high. The
figure also shows the agent’s hyperparameter optimisation
behaviour. Rather than learning a fixed optimal hyperparam-
eter value for the problem distribution, the agent is clearly
adapting its hyperparameter values to the cost of thinking in
the current problem. Higher costs of thinking correlate with
higher WBRTDP heuristic weights. Higher heuristic weights
decrease the time taken for the planner to generate an initial
imperfect solution, as illustrated in Figure 2.
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Figure 5: Correlation between the cost of thinking value in
an episode and two algorithm behaviour metrics: metalevel
episode length and average hyperparameter values chosen by
the metalevel agent. Lines are linear regression fits.

Conclusion
This paper has presented a learning-based method to achieve
non-myopic metalevel control of probabilistic planning al-
gorithms. Our abstraction of algorithm configuration to al-
gorithm features may lead to a non-Markov state transition
function, which could be addressed in future work using a
recurrent, LSTM or transformer architecture. We also aim to
extend this method to the online planning rather than single-
shot planning setting, widening its applicability. Finally, the
assumption of a default object-level policy could be lifted by
reasoning about both the goal-reaching success probability
and the expected cost of the current policy.
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Supplementary Materials

Weighted BRTDP (WBRTDP)
Prelims. In heuristic search, a heuristic function h(s)
guides search by estimating the expected cost of the optimal
policy π∗ starting from state s. A lower-bound (optimistic)
heuristic is admissible if it never overestimates the true cost
to reach the goal. An upper-bound (pessimistic) heuristic is
admissible if it never underestimates the true cost to reach
the goal.

Algorithm overview. WBRTDP is a weighted hyperparam-
eterised version of BRTDP (McMahan, Likhachev, and Gor-
don 2005). It maintains multiple lower-bound value functions,
each of which use different heuristic value initialisations. We
define state-action Q-values with respect to a value function
v as

Qv(s, a) = c(s, a) +
∑
s′

T (s, a, s′)v(s′). (1)

In WBRTDP, vl(s) is a tuple of Nv lower-bound value
functions

(
vil(s)

)Nv

i=0
, each initialised with a different lower-

bound heuristic. Let κ be an index into vl(s), and let hl(s)
be a Nv-length tuple of lower-bound heuristic functions used
to initialise vl(s). Each lower-bound value function is Bell-
man updated in parallel during planning using the cost and
transition function for the MDP. The action selected for each
state during a trial is the action that maximises the lower-
bound value function estimate at index κ. κ therefore acts as
a hyperparameter which selects which lower-bound heuris-
tic to use during planning, and may be altered during the
planning process. The WBRTDP PLAN method accepts a
hyperparameter κ to use for that planning cycle.

hl(s) is expected to be a tuple of the heuristic function with
increasing weights applied, or different heuristic functions
with increasing inadmissibility. As we use a tuple of fixed val-
ues in our paper, the tuple of heuristic initialisation values are
effectively weighted versions of a single fixed-value heuristic
function. Such a heuristic function was demonstrated in exper-
iments in the original BRTDP paper (McMahan, Likhachev,
and Gordon 2005), and is simpler than the heuristic gener-
ation algorithm also described in that paper. We also tested
weighted versions of simple heuristic functions, e.g. Manhat-
tan and Euclidean distance, but did not find they performed
any better than the fixed-value heuristic in either domain.

Note that only the lower bound heuristics are weighted.
The upper bound heuristic remains admissible, and as in
BRTDP, the output policy is greedy with respect to the upper
bound value function estimate. This means that the upper
bound value function remains an upper bound on the true
value function, and the weighted heuristics affect only the
speed of convergence by biasing search actions during plan-
ning. With an admissible upper bound heuristic, the upper

Algorithm 2: WBRTDP

Input: Solution convergence tolerance α, trial termination
constant τ , initial state s0, lower bound heuristic func-
tion hl(s), lower bound heuristic index κ, upper bound
heuristic function hu(s), maximum number of state vis-
its to run Nmax

visit
Output: Policy πvu

s0 , greedy with respect to the upper bound
value function estimate vu

1: procedure WBRTDP INIT
2: vu(s)← hu(s) ∀s ∈ S ▷ Or lazy initialise on visit
3: vl(s)← hl(s) ∀s ∈ S ▷ Or lazy initialise on visit
4: Nvisit ← 0
5: end procedure

6: procedure WBRTDP PLAN(α, τ, s0, κ,Nmax
visit )

7: while (vu(s0)− vκl (so)) > α and Nvisit < Nmax
visit do

8: WBRTDP TRIAL(s0)
9: end while

10: return πvu
s0 ▷ Calculate greedy policy wrt vu

11: end procedure

12: procedure WBRTDP TRIAL(s0)
13: visited← (empty stack)
14: s← s0
15: while true do
16: visited.push(s)
17: vu(s)← mina Qvu(s, a)
18: a,vl(s)← BELLMANTUPLEUPDATE(s)
19: ∀s′, b(s′)← T (s, a, s′)(vu(s

′)− vκl (s
′))

20: B ←
∑

s′ b(s
′)

21: if B < ((vu(s0)− vκl (s0))/τ) then break
22: end if
23: s← sample from distribution b(y)/B
24: end while
25: Nvisit ← Nvisit + visited.size
26: while visited.size > 0 do
27: s← visited.pop()
28: vu(s)← mina Qvu(s, a)
29: ,vl(s)← BELLMANTUPLEUPDATE(s)
30: end while
31: end procedure

32: procedure BELLMANTUPLEUPDATE(s)

33: Qbest ←
(
mina Qvi

l
(s, a)

)Nv

i=0
34: a← argmaxa Qvκ

l
(s, a)

35: return a,Qbest
36: end procedure



bound performance guarantee of BRTDP will therefore be
maintained.

If the algorithm is queried for a solution in the middle of
running a trial, it returns the current best solution found so
far in previous trials.

Algorithm description. The structure of WBRTDP (Algo-
rithm 2) is similar to BRTDP, with the addition of a hyperpa-
rameter κ to select the lower bound heuristic to use for the
current planning cycle. Some components are separated into
subroutines for clarity. The WBRTDP INIT routine is called
at the start of planning, to initialise the value functions and
the state visit counter. In practice, the heuristic values are
initialised lazily on first visit to a state, rather than all at once
at the start of planning.

The WBRTDP PLAN routine is called to run the planning
algorithm. This is expected to be called multiple times by the
metalevel agent, each time specifying the cumulative number
of state visits to run (line 6). The WBRTDP PLAN routine
carries out trials starting from the root node s0 (line 8) until
the termination condition is met. The trials loop terminates
when the difference between the upper and lower bound value
functions at the root node is less than a threshold α, or the
number of state visits exceeds a maximum Nmax

visit (line 7).
When the loop terminates, the greedy policy with respect to
the upper bound value function is returned (line 10).

Note that the termination condition depends on the current
lower bound heuristic index κ. If the solution has converged
within α for one lower bound heuristic, it may not have
converged for another lower bound heuristic. Planning can be
continued using a different lower bound heuristic by calling
the plan routine again with a different κ.

The WBRTDP TRIAL routine carries out a single trial,
starting from the root node s0. The structure is much the same
as in BRTDP, with three differences. Firstly, Bellman updates
for the lower bound value function (lines 18 and 29) are sepa-
rated into a subroutine BELLMANTUPLEUPDATE. Secondly,
the weighted sampling (line 19) and trial termination steps
(line 22) are dependent on the lower bound heuristic index κ.
Thirdly, we track the number of trial state visits in line 25.

The BELLMANTUPLEUPDATE subroutine is called to up-
date the lower bound value function at a state s and to return
the action greedy with respect to the κth lower bound value
function. As the transition and cost function components are
the same for each Q-value update in the tuple (line 33), we
can compute the Q-value updates for all lower bound value
functions in a single pass over actions and outcome combi-
nations. This leads to a negligible computational overhead
compared to updating a single lower bound value function.

The overall computational overhead of WBRTDP com-
pared to BRTDP is negligible as long as evaluating the tuple
of lower-bound heuristic functions is not signficantly more
expensive than evaluating a single heuristic function. This ap-
plies when using weighted multiples of a heuristic function.

Algorithm features. Algorithm features for WBRTDP are
the value of the upper and lower bound value functions at
the root node s0, the number of trials completed, the total
number of state visits during all trials, and the number of
state visits during the last trial.

Hyperparameters. For the experiments we provide uni-
form uninformative (fixed-value) heuristics for the up-
per and lower bound value functions. The lower bound
heuristic function therefore provides fixed values rather
than a weighted version of a heuristic function: hl(s) =
(0.0, 10.0, 20.0, 30.0) ∀s. This results in a metalevel action
space size of 5 (4 hyperparameter options and 1 EXEC action).
The heuristic initialisation for the upper bound function is
fixed at hu(s) = 100.0 ∀s, which is admissible for all prob-
lems.

Deep Q Network
The DQN (Mnih et al. 2015) algorithm implementation is
from Stable Baselines 3, version 1.8.0 (Raffin et al. 2021).
Training is vectorised with 10 parallel environments. Default
parameters are used, other than setting the number of gradient
steps to match the number of transitions collected across all
parallel environment instances. As a basic hyperparameter
evaluation, experiments were also run using the default pa-
rameters of the DQN implementation from the work of Bhatia
et al. (2022). This yielded slightly decreased performance so
these hyperparameters were not used for further experiments.

As is common with deep RL, we normalise algorithm
features and the context vector to the range 0 to 1. Value
functions are normalised using the maximum possible cost-to-
goal from s0 for the problem distribution p(M). The number
of trial state visits feature is normalised by the number of
trial state visits corresponding to the maximum number of
timesteps per episode.

Alternative solution quality etimation methods
The PolicyEval and MidBound methods estimate the value
of the current solution and use this estimate in the reward
function defined by (Bhatia et al. 2022). This consists of re-
warding the RL algorithm with the improvement in solution
cost minus the cost of thinking. The computational over-
head of PolicyEval is evaluated by recording the runtimes of
planning and policy evaluation for each metalevel timestep.
Using the ratio of these times, policy evaluation cost can
be expressed in cost-of-thinking units. The total deliberation
cost is the combination of planning cost and policy evaluation
cost. The PolicyEval RL agent is provided with this total cost
during training and evaluation. The same method is used to
adjust the incurred cost of thinking during evaluation on the
held-out problem set.

Experiments/Reproducibility
The held-out problem set used to evaluate algorithms’ per-
formance is reproducibly seeded. Each held-out environment
is seeded with the same value across all algorithms. This
ensures identical object-level policy execution and planner
dynamics across each evaluation.

Experiment-running machines were Amazon Web Services
G4dn.4xlarge instances with 16 vCPUs, 64 GiB RAM, and 1x
16GiB NVIDIA T4 GPU. The operating system was Ubuntu
20.04. The object-level MDP simulation and WBRTDP were
implemented in C++.



Deep Sea Treasure domain

Figure 1: Four randomly generated deep sea treasure prob-
lems. The agent start location is shown in green, and increas-
ingly dark red colours show increasingly valuable treasures.

This section describes the generation of problemsM ∼
p(M) for the deep sea treasure domain.

Figure 1 shows four randomly generated deep sea trea-
sure layouts. Grid dimensions are sampled with dimx ∼
Uniform{10, 20} and dimy ∼ Uniform{18, 25}. The ocean
floor is generated by sampling a depth ∼ Uniform{3, dimy}
for each for each x up to dimx, and then sorting these points
in ascending order to give monotonically increasing depth
with x. A treasure is placed at each point just above the
ocean floor, with a probability Ptreasure = 0.9 for each point.
Treasure values are sampled using a Poisson distribution
with depth-dependent mean. The mean value for a depth is
proportional to a polynomial (depth)2. The maximum trea-
sure value that can be sampled is 99. Problem instances are
generated by combining a deep sea treasure layout with a
uniformly sampled cost of thinking λ ∼ Uniform(0.0, 10.0),
a per-axis speed limit vmax ∼ Uniform{1, 2}, and an action
failure probability Pfail ∼ Uniform(0, 0.3).

The initial state is always the top left corner of the grid.
The default policy action is always to descend towards the
ocean floor, and to proceed to the right if the agent is at the
ocean floor but no treasure is present at that location.

Race track domain

Figure 2: Four randomly generated race track problems. The
start line is shown in dark grey, and the finish line is shown
in light grey.

This section describes the generation of problemsM ∼
p(M) for the race track domain.

Figure 2 shows four randomly generated race track layouts.
Race track layouts are generated by sampling 2 random paths
in a 4× 3 grid of nodes, each with a minimum path length
of 5 and a maximum path length of 9. These paths are com-
bined to form a high-level layout which may include forks
and loops. The high-level layout is upscaled into a 28× 21
cell race track using a set of 7× 7 cell templates which map
to possible combinations of paths leading into/out of a node.
If the resulting race track is too short (minimum path length
from start to goal < 50), then the paths are resampled. A race
track being too short could result from the combination of
the two sampled node paths being too short, even if each in-
dividual path matches the path length requirements. The start
line is placed at the start of the path in the top left corner, and
the finish line is placed at the end of the path. Problems in-
stances are generated by combining a race track layout with a
uniformly sampled cost of thinking λ ∼ Uniform(0.0, 10.0),
a per-axis speed limit vmax ∼ Uniform{3, 4}, and an action
failure probability Pfail ∼ Uniform(0, 0.3).

The centre point of the start line is chosen as the determin-
istic initial state for the agent. The default policy action is to
proceed at a speed of 1 along the track towards the goal.


